
Making a Map-making Robot:
Using the IKAROS System to Implement the Occupancy Grid Algorithm.

Rasmus Bååth, Birger Johansson
Lund University Cognitive Science

Kungshuset, Lundagård, 222 22 Lund
rasmus.baath@lucs.lu.se, birger.johansson@lucs.lu.se

Abstract

This paper describes an implementation of the occu-
pancy grid algorithm, one of the most popular algo-
rithms for robotic mapping. The algorithm is imple-
mented on a robot setup at Lund University Cogni-
tive Science (LUCS), and a number of experiments are
conducted where the algorithm is exposed to different
kinds of noise. The outcome show that the algorithm
performs well given its parameters are tuned right.
The conclusion is made that, in spite of its limita-
tions, the occupancy grid map algorithm is a robust
algorithm that works well in practice.

1 Introduction

Maps are extremely useful artifacts. A map helps us
relate to places we have never been to and shows us
the way if we decide we want to go there. For an au-
tonomous robot a map is even more useful as it could,
if it is detailed enough, serve as the robot’s internal
representation of the world. The field of robotic map-
ping is quite young and started to receive attention
first in the early 80s. Since then a lot of effort has
gone into constructing robust robotic mapping algo-
rithms, but the challenge is great as the way a human
intuitively would build a map can not be directly ap-
plicable to a robot. Whereas a human possesses supe-
rior vision sensors and can locate herself by identify-
ing landmarks, a robot, most often, only have sensors
that approximates the distance to the closest walls.
The conditions of robotic mapping actually closer re-
sembles the conditions for a 15th century ship map-
ping uncharted water. Similar to the ship the robot
only knows the approximate distance to the closest
obstacles, it could happen that all obstacles are so far
away that the robot senses void and it is often difficult
for the robot to keep track of its position and heading.
As opposed to the ship, a robot using a faulty map
will bump into walls in a disgraceful manner, while

the ship, on the other hand, might discover America.
A long-standing goal of AI and robotics research

has been to construct truly autonomous robot’s, ca-
pable of reasoning about and interacting with their
environment. It is hard to see how this could be re-
alized without general robust mapping algorithms.

1.1 The Approach of this Paper
This paper describes an implementation of a map
building algorithm for a robot setup at LUCS. The
main characteristics of the robot setup are that the
environment is static and that the pose is given, there-
fore it does not induce all the difficulties mentioned
above. The given pose is not without noise but there
will never be the problem with cumulative position
noise. Even if the problem is eased it is still far from
trivial thus interesting in its own right. The setup
will be further described in section 2. Given these
precondition the occupancy grid map algorithm, first
described by Elfes and Moravec [3], was chosen. The
occupancy grid map algorithm was implemented and
a number of experiments were conducted to investi-
gate how it would perform given different types of
sensor noise. The results of the experiments are pre-
sented in section 3.2.

1.2 The Occupancy Grid Map Algo-
rithm

The occupancy grid map algorithm was developed in
the mid 80s by Efes and Moravec and is a recursive
Bayesian estimation algorithm. Here recursive means
that in order integrate an nth sensor reading into a
map no history of sensor readings is necessary. This is
a useful property which implies that sensor readings
can be integrated online and that the space and time
complexity is constant with respect to the number of
sensor readings. The algorithm is Bayesian because
the central update equation is based on Bayes theo-
rem:

P (A|B) =
P (B|A)P (A)

P (B)

which answers the question “what is the proba-
bility of A given B”, if we know the probabilities
P (B|A), P (A) and P (B).

The map data structure is a grid, in 2D or 3D, that
represents a region in space. This paper will treat
the 2D case, thus the region is a rectangle. The value
of each cell of the grid is the estimated probability
that the corresponding area in space is occupied. The
region corresponding to a cell is always considered
completely occupied or completely empty. One can
have different definitions regarding whether a region
is free or occupied, but often a region is considered
occupied if any part of it is occupied.

The algorithm consists of two separate parts: the
update equation and a sensor model. The update
equation is the basis of the algorithm and does not
have to change for different robot setups. The sensor
model on the other hand depends on the robot setup
and each robot setup requires a customized sensor
model. One can construct sensor models in many
ways but the basic approach is described in section
1.3.

The computational complexity of the algorithm de-
pends on the implementation of the sensor model.
Apart from that, each update loop have time com-
plexity O(n′m′), where n′ and m′ are the number
of columns and rows of the grid that are affected
by the current sensor reading. The space complex-
ity is O(nm) where n and m are the total number
of columns and rows of the grid. An accessible in-
troduction to occupancy grid maps is given by Elfes
[2].

The original algorithm is limited in several ways. It
requires that the robot’s pose is given, thus it can not
rely solely on the odometry of the robot. It presumes
a static environment or requires sensor readings where
dynamic obstacles have been filtered. Finally the area
to be mapped has to be specified in advance. This
might sound like severe limitations but in many robot
setups one can assume a static environment and that
there is a way to deduce the robot’s pose. The original
algorithm has also been successfully extended to deal
with e.g. unknown robot poses [7].

1.3 The Inverse Sensor Model

A sensor model is a procedure for calculating the
probability P (st|m, pt), that is the probability to get
sensor reading st given map m and pose pt at time t.
Therefore it follows that the procedure for calculating
P (m|st, pt) is called an inverse sensor model, that is

the probability of m given only one sensor reading.
An inverse sensor model can be though of as func-
tion ism(st, pt) that returns a grid the size of g where
the probabilities of P (m|st,pt) are imprinted. There
is not only one correct way to construct ism(st, pt)
for a given sensor, different approaches have different
advantages.

An example of how the output of an inverse sensor
model could look is given in figure 1.

Figure 1: Illustration of an inverse sensor model for a
robot equipped with infra-red proximity sensors.

The picture to the left show what the robot senses.
The picture to the right is the resulting occupational
probabilities. White denotes occupied space,black de-
notes free space and gray denotes unknown space. No-
tice how the black strokes fade with the distance to
the robot. This indicates that the probability that a
sensor detects an obstacle decreases with the distance
to the obstacle.

An inverse sensor model can be built by hand or
learned, for an example of the first see Elfes and
Moravec [3] or the one described in section 2.1.5, for
an example of the latter see Thrun et al. [6].

2 Implementation
In order to understand the design choices made a de-
scription of the robot setup will first be given, then
the implementation will be described. The setup is
currently used in the ongoing research regarding robot
attention and one purpose of the implementation was
that it should be possible to use in this context.

2.1 The Robot Setup
The robot used is the e-puck, a small, muffin sized
robot developed by École Polytechnique Fédérale de
Lausanne (www.e-puck.org). Its a differential wheeled
robot boosting eight infra-red proximity sensors, a
camera, accelerometer and Bluetooth connectivity.
The e-puck also have very precise step motors to con-
trol its wheels. One problem is that no matter how

precise the e-pucks odometry is it can not solely be
used to determine the robot’s poses. Another prob-
lem is the proximity sensors of the e-puck. They have
very limited range, roughly 10 cm, and are sensitive
with respect to light conditions.

In order to remedy these problems a video camera
has been placed in the ceiling of room where the robot
experiments take place. The robots movements are
restricted to a 2× 2 m2 “sandbox” and objects in this
area have been given color codes. Robots are wearing
bright red plastic cups, the floor, the free space, is
dark gray and obstacles are white. Images from the
camera are processed in order to extract the poses of
the robots and an image where only the obstacles are
visible. Given this image and a robot’s pose a circle
sector is cut out of the image, its center being the
robot’s position and its direction being the robot’s
heading. By using this as the robot’s sensor reading
the robot can be treated as if it had a high resolu-
tion proximity sensor. The robots are controlled over
Bluetooth link.

2.1.1 Ikaros

The whole system is implemented using Ikaros, a
multi-purpose framework developed at LUCS. Ikaros
is written in C++ and is intended for, among other
things, brain modeling and robot control. The cen-
tral concept in Ikaros is the module, and a system
built in Ikaros is a collection of connected module’s.
An Ikaros module is simply put, a collection of in-
puts and an algorithm that works on these, the result
ending up in a number of outputs. A module’s in-
puts and outputs are defined by an Ikaros control file
using an XML based language while the algorithm is
implemented in C++.

A module’s outputs can be connected to other mod-
ule’s inputs and to build a working system in Ikaros
you would specify these connection in a control file. In
this control file you could also give arguments to the

Figure 2: The e-puck.

modules. The data that can be transmitted between
modules can only be in one format, that is arrays and
matrices of floats. An Ikaros system works in discrete
time-steps, so called “ticks”. Each tick every module
receives input and produces output.

Ikaros comes with a number of modules, both sim-
ple utility modules and more advanced such as sev-
eral image feature extraction modules. Ikaros also
includes a web interface that can display outputs in
different ways. For a detailed introduction to Ikaros
see Balkenius et al. [1].

2.1.2 Overview of the System

The core of the map drawing system consists of
five modules: Camera, Tracker, CameraSensor,
SensorModel and OccupancyGridMap. Further mod-
ules could be added to the system, e.g. a path plan-
ning module and a robot controller module. The con-
nections between these modules are given in figure
3.

2.1.3 Camera and Tracker

The Camera and Tracker modules were already avail-
able and will only be described briefly.

The Camera module is basically a network camera
interface and it is used to fetch images from the cam-
era mounted in the ceiling. It outputs three matrices;
RED, GREEN and BLUE, the size of the image, containing
the corresponding color intensities of the image.

These matrices are fed into the Tracker module
that extracts the poses of the robots and the posi-
tions of obstacles in the image. It outputs one array
POSITION with the positions of the robots, one array
HEADING with the headings of the robots and one ma-
trix OBSTACLES with the obstacles extracted from the
picture. POSITION is of the form [r1x, r1y, r2x, r2y . . .]
where rnx and rny is the nth robots x and y coordi-
nate receptively. x and y are in the range 0.0 to 1.0
and the origo is in the upper left corner of the im-
age. HEADING is of the same form as POSITION except
for that rnx and rny define a direction vector for the
nth robot. The POSITION and HEADING will be re-
ferred to as the POSE. OBSTACLES is in the form of an
occupancy grid over the area covered by the camera
image, where 1.0 denotes an obstacle and 0.0 denotes
free space.

2.1.4 CameraSensor

The CameraSensor module simulates a high resolu-
tion proximity sensor. It requires a matrix in the form
of Tracker’s OBSTACLES matrix and an array with
the position of a robot as inputs. More specific we

Figure 3: The connections between the modules of the map drawing system, with added path planning and
robot control modules.

want to simulate a top mounted stereo camera. The
CameraSensor module takes arguments specifying he
range of the camera and the breadth of the view.
Given the pose of the robot a square is cut out of
the matrix, this square is rotated and projected onto
another matrix representing the SENSOR READING of
the robot. The SENSOR READING shows everything in
the cut out square, even obstacles behind walls. Some
simple ray-casting will solve this. Rays are shot from
the center of the robot to the edge lying on the op-
posite side of the SENSOR READING matrix so that the
cells touched by the rays form a circle sector. If a
ray hits an obstacle the ray stops and all cells not
touched by any ray obtains the value 0.5 indicating
it’s not part of the sensor reading. CameraSensor
then outputs SENSOR READING.

2.1.5 CameraSensorModel

The CameraSensorModel is an inverse sensor
model tailored to work with the output of the
CameraSensor. CameraSensorModel has two out-
puts, both required by OccupancyGridMap: AFFECTED
GRID REGION and OCC PROB GRID. OCC PROB GRID is
a matrix the same size as the final occupancy grid
that contains the probabilities P (m|st, pt). AFFECTED
GRID REGION is an array of length four defining a box
bounding the area of the occupancy grid that is af-
fected by the OCC PROB GRID. The rationale behind
this is that OccupancyGridMap should not have to up-
date the whole occupancy grid when only a small area
of it is affected by the current SENSOR READING.

The SENSOR READING from CameraSensor is al-
ready in the format of an occupancy grid, so trans-
forming this into OCC PROB GRID in the format
the OccupancyGridMap module requires, is pretty
straight forward. First OCC PROB GRID is initialized
with P (m), the prior probability, given as an ar-
gument to CameraSensorModel. Then the SENSOR

READING is rotated and translated, according to the
robot’s pose, so that it covers the corresponding
area of the OCC PROB GRID. The SENSOR READING is
then imprinted on the OCC PROB GRID. The values
of SENSOR READING; 1.0, 0.5 and 0.0, should not be
used directly as they do not correspond to the right
probabilities. Instead 0.5 is substituted by the prior
probability and 1.0 and 0.0 are substituted by two val-
ues free_prob and occ_prob given as arguments to
CameraSensorModel. The values of free_prob and
occ_prob should reflect probability that the informa-
tion in SENSOR READING is correct. As the Camera
and Tracker modules are quite exact good values
seems to be; free_prob= 0.05 and occ_prob = 0.95.
The performance of occupancy grid algorithm de-
pends heavily on these values and they have to be ad-
justed according to the reliability of SENSOR READING.
This will be further discussed in section 3.2.

2.1.6 OccupancyGridMap

The OccupancyGridMap take two inputs in the for-
mats of OCC PROB GRID and AFFECTED GRID REGION.
OccupancyGridMap also contains the state of the oc-
cupancy grid constructed so far; MAP GRID, and the
prior probability; pri_prob, given as an argument.
The MAP GRID is initialized by giving each cell the
value of pri_prob.

The purpose of OccupancyGridMap is to update
MAP GRID using the update equation of the occupancy
grid map algorithm. This is done by applying this on
all cells in MAP GRID that are inside the box defined
by AFFECTED GRID REGION. Here follows the update
equation taken directly from the code:

for(int i = affected_grid_region[2];
i <= affected_grid_region[3]; i++)
{

for(int j = affected_grid_region[0];
j <= affected_grid_region[1]; j++)
{

Figure 4: The image to the right shows the probabil-
ities of a number of sensor readings and the image to
the left shows the resulting occupancy grid map.

float occ_prob = occ_prob_grid[i][j];
map_grid[i][j] = 1.0 / (

1.0 + (1.0 - occ_prob) / occ_prob *
prior_prob / (1.0 - prior_prob) *
(1.0 - map_grid[i][j]) / map_grid[i][j]);

}
}

An example of an how a MAP GRID could look is given
in figure 4.

3 Evaluation

The implementation of the occupancy grid algorithm
works very well on the robot setup. This is no big
surprise as the conditions are ideal, there is practi-
cally no sensor noise nor pose uncertainty. In order to
investigate how the implementation would handle dif-
ferent conditions a number of experiments were made,
where noise was added to the sensor readings. How
the implementation reacts to noise is highly depen-
dent on the two parameters of CameraSensorModel;
free_prob and occ_prob. Thus for each experiment,
except for № 2, three different values of free_prob
and occ_prob were used to illustrate this. The follow-
ing values were used (using the notation [free_prob,
occ_prob]): [0.01, 0.99], [0.2, 0.8] and [0.45, 0.55].
These values will be referred to as the sensor weights,
as they reflect to what degree the occupancy grid
map algorithm is persuaded by new sensor readings.
All experiments used pri_prob = 0.5. The parame-
ters free_prob and occ_prob might seem to be very
specific for the CameraSensorModel but any sensor
model will have parameters that governs to what de-
gree the sensor readings should be trusted.

3.1 Experiment Setup

The experiments were setup in the following way: A
robot was placed in the middle of the 2×2 m2 “sand-

Figure 5: The experiment setup. The real world
“sandbox” is to the left and the grid showing the ex-
tracted obstacles is to the right.

box” and a number of obstacles were placed around
it, the result is shown in figure 5 . The “camera”
of CameraSensor was given a range of

√
2 m and a

breadth of 32◦. The robot does not move but each
tick the heading of the robot is randomized, in this
way the robot will eventually have “seen” the whole
“sandbox” visible from the center. Four different ex-
periments were then conducted:

1. The ideal case. No noise was added, this is to
get an measure to compare the other experiments
with.

2. Gaussian white noise was added to the OCC PROB
GRID of the CameraSensorModel. The noise had
a variance of 0.1 and was applied to each cell
OPG[x, y] in the following way:

OPG[x, y] =



if OPG[x, y] < pri_prob then
OPG[x, y] + abs(noise)

if OPG[x, y] == pri_prob then
pri_prob

if OPG[x, y] > pri_prob then
OPG[x, y]− abs(noise)

.

This experiment only uses free_prob=0.0 and
occ_prob=1.0.

3. Salt and Pepper noise was added to 40 % of the
OCC PROB GRID that represents the current sen-
sor reading. That is, each cell that does no have
the value pri_prob is given, by the toss of a coin,
one of the values free_prob and occ_prob by a
chance of 40%.

4. Gaussian white noise was added to he robot’s po-
sition given as input to the CameraSensorModel.
The noise had a variance of 0.001.

In order to compare the different experiment setups
the comparison score measure described in Martin
and Moravec [4] was used.

Let I be the ideal map over the same area as a
constructed occupancy grid map m. I then only con-
tains the values 1.0, 0.5 and 0.0, where 0.5 indicate
that the value of the corresponding cell is unknown.
The probability that a cell mx,y represents the same
thing as Ix,y is Ix,ymx,y + (1 − Ix,y)(1 −mx,y). The
probability that m represents the same as I is then:∏

x,y

(Ix,ymx,y + (1− Ix,y)(1−mx,y))

A problem is that this value will be very small for
large maps. In order to remedy this the log2 of this
value is taken and |I| is added. This results in the
following score measure:

|I|+ log2

(∏
x,y

(Ix,ymx,y + (1− Ix,y)(1−mx,y))

)

The maximum score of m is |I| minus the num-
ber of cells of I that are equal to 0.5. The ideal
map was constructed by running experiment № 1 with
free_prob=0.45 and occ_prob=0.55 for 2000 steps.
The probabilities of this map was then rounded to the
closest of the values 1.0, pri_prob and 0.0. Given this
ideal map the possible maximum score is 640.

3.2 Results

Generally the implementation performed well in all
four experiments but what became obvious is that
the choice of sensor weights is important. Each ex-
periment was run for a 1 000 ticks. As all of the
experiments contain a randomized component a sin-
gle run might not produce a characteristic result. To
avoid this, each experiment was run ten times and the
average of each tick was taken. The result of this is
shown in figure 6. When interpretating these charts
one should know that a score above 500 corresponds
to a reasonably good map. Rather than looking for
the sensor weights that eventually results in the best
score one should look for the sensor weights that con-
verge fast to a reasonable score. Most often a robot
has more use for a good enough map now, that for
a perfect map in five minutes. Because of this, the
charts only display up to tick 500, even if the maps
continue to converge after that.

Experiment № 1

This was the ideal case and as shown in figure 6a the
algorithm performs well for both [0.01, 0.99] and [0.2,
0.8]. Even if [0.45, 0.55] surpasses them both eventu-
ally, it converges to slow to be practically useful.

Experiment № 2

The outcome of this experiment, as shown in figure
6b, show the strength of the probabilistic approach
to robotic mapping. The algorithm handles the noisy
sensor readings well and the map converges nearly as
fast as [0.2, 0.8] from № 1.

Experiment № 3

Figure 6c show how to high or to low set sensor weight
impacts the performance of the algorithm. While [0.2,
0.8] converges nicely, [0.45, 0.55] converges steady but
too slow. As [0.01, 0.99] is the most sensible to noise,
it converges slowly and never produces a reliable map.

Experiment № 4

In this last experiment the score measure is a bit mis-
leading. All three choices of sensor weights actually
produces acceptable maps. What happens in the case
of [0.01, 0.99] is that the edges of the obstacles get
slightly displaced, which the score measure penalizes.
Even though [0.01, 0.99] of № 3 and № 4 score the
same, the map from № 3 is practically unusable, while
the map from № 4 is OK.

3.3 Using the Implementation
To show that the map drawing implementation can be
used in practice an Ikaros system was setup to control
an e-puck robot. Basically, this is the system shown in
figure 3, including the dashed lines. The goal of the e-
puck was to find another e-puck wandering randomly
in a maze. The e-puck was not given a path to the
other e-puck, only its position. In order to find a path
to the other e-puck a wavefront algorithm as described
in [5] was used. The e-puck would begin with an
empty map, which it would build up gradually as it
tried different paths to the other e-puck. Eventually,
the map would be complete enough so that the e-puck
would find a safe path to the other e-puck.

4 Discussion
This paper has described an implementation of the
occupancy grid map algorithm. This algorithm was
implemented to be used with the e-puck robot, us-
ing the Ikaros framework. A derivation of the update
equation, the basis of the algorithm, was given, as
well as a measure for comparing maps. The imple-
mentation worked well. This was no surprise as the
sensors and the pose tracking system produced very
exact information. To investigate how noise would
affect the performance of the algorithm a number of

(a
)

E
xp

er
im

en
t

№
1,

th
e

id
ea

l
ca

se
.

(b
)

E
xp

er
im

en
t

№
2,

ga
us

si
an

w
hi

te
no

is
e.

(c
)

E
xp

er
im

en
t

№
3,

sa
lt

an
d

pe
pp

er
no

is
e.

(d
)

E
xp

er
im

en
t

№
4,

po
si

ti
on

al
ga

us
si

an
w

hi
te

no
is

e.

F
ig
ur
e
6:

G
ra
ph

s
sh
ow

in
g
ho

w
th
e
es
ti
m
at
ed

m
ap

co
nv

er
ge
s
to

th
e
id
ea
lm

ap
gi
ve
n
di
ffe

re
nt

no
is
e
an

d
di
ffe

re
nt

se
ns
or

w
ei
gh

ts
.

experiments were conducted. Gaussian white noise
was applied to the sensors and the pose tracking sys-
tem, and so called salt and pepper noise was applied
to the sensors only. To show that the implementation
was usable in practice a system was constructed that
made an e-puck draw an occupancy grid map. The
e-puck then used this map to find a path to another
e-puck wandering randomly.

4.1 Evaluation of the Experiments

Experiment № 1 show that the algorithm works well
given ideal preconditions. This is no surprise, but it
is important note how the tuning of sensor weights
impacts the performance. When the sensor weights
are set so that the algorithm put little trust in the
sensors, the map converges steadily but unnecessarily
slow.

Experiment № 2 and 3 show the strength of the al-
gorithm, its capability to handle independent noise.
Both the sensor readings of № 2 and 3 are very noisy,
indeed it is often hard for the human eye to separate
true obstacles from noise. The algorithm manages
this well, given that the sensor weights are set so that
the algorithm does not put to much trust in the sen-
sors.

Experiment № 4 show that the algorithm can pro-
duce an acceptable map when the position is noisy.
The tuning of the sensor weights does not have such
an impact as figure 6d might suggest. This is due
to the fact that the score measure does not reward
correctly identified obstacles that are off by a small
distance. One problem with positional noise is that
it does not lead to sensor noise that is statistically
independent. If the positional noise is to large the
algorithm will not be able to handle it no matter how
the sensor weights are tuned.

The implementation of the e-puck control system
described in section 3.3 worked well in simulation.
The two robots steadily moved towards each other,
drawing the map and avoiding obstacles as they went
along. When trying this with the real robots there
were some problems. The Trackermodule sometimes
confused one of the robots for the other one. Also
there were some problems communicating with two
robots over one Bluetooth connection. Nevertheless,
the occupancy grid map algorithm, in combination
with the wavefront path planner, always produced a
correct path, even if the robot had troubles following
it.

4.2 Conclusion
In spite of its limitation the occupancy grid map al-
gorithm is, as this paper has shown, a robust and
versatile algorithm. When in need for a robotic map-
ping algorithm one should have good reasons not to
consider using it.

References
[1] C. Balkenius, J. Morén, B. Johansson, and

M. Johnsson. Ikaros: Building cognitive models
for robots. Advanced Engineering Informatics, 24
(1):40–48, 2009.

[2] A. Elfes. Using occupancy grids for mobile robot
perception and navigation. Computer, 22(6):46–
57, June 1989. ISSN 0018-9162.

[3] A. Elfes and H. Moravec. High resolution maps
fron wide angle sonar. IEEE International confer-
ence on Robotics and Automation, 1985.

[4] Martin C. Martin and Hans Moravec. Robot ev-
idence grids. Technical Report CMU-RI-TR-96-
06, Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, March 1996.

[5] S. Russell and P. Norvig. Artificial Intelligence -
a Modern Approach, 2nd edition. Prentice Hall,
2002.

[6] S. Thrun, A. Bücken, W. Burgard, D. Fox,
T. Fröhlinghaus, D. Henning, T. Hofmann,
M. Krell, and T. Schmidt. Map learning and high-
speed navigation in RHINO. In D. Kortenkamp,
R.P. Bonasso, and R Murphy, editors, AI-based
Mobile Robots: Case Studies of Successful Robot
Systems. MIT Press, 1998.

[7] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cre-
mers, F. Dellaert, D. Fox, D. Hähnel, C. Rosen-
berg, N. Roy, J. Schulte, and D. Schulz. MIN-
ERVA: A second generation mobile tour-guide
robot. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA),
1999.

